

Assumptions

- 1. The experiment consists of *n* of Bernoulli trials.
- 2. The probability of a success is the same for each trial.
- 3. The trials are independent.
- *4. X* denote the no. of successes obtained in the *n* trials

Definition

A random variable *X* is said to have binomial distribution with parameter *n* and *p* if its density is given

$$
f(x)=b(x; n, p) = {n \choose x} p^x (1-p)^{n-x}
$$
 for $x = 0, 1, 2, ..., n$.

where *p* is the probability of getting success.

1/27/2016

Example: An experiment consists of four tosses of a coin. Denoting the outcomes *HHTH, THTT, ….,* and assuming that all 16 outcomes are equally likely, find the probability distribution for the total number of head.

Solution: $n = 4$ and $p = 1/2$, Let *X* be the total number of heads in 4 tosses where $x = 0, 1, 2, 3, 4$, the probability distribution for *X* is given by

$$
f(x) = P(X = x) = b(x:4,1/2)
$$

Distribution function for binomial distribution

$$
F(x) = \sum_{k=0}^{x} b(k; n, p) \text{ for } x = 0, 1, 2, ..., n
$$

=
$$
\sum_{k=0}^{x} {n \choose k} p^{k} (1-p)^{n-k} \text{ for } x = 0, 1, 2, ..., n
$$

 \triangleright The value of $b(x; n, p)$ can be obtained by formula

$$
b(x; n, p) = B(x; n, p) - B(x - 1; n, p)
$$

Note: If *n* is large the calculation of binomial probability can become quite tedious.

0 $f(x) = B(x; n, p) = \sum_{n=1}^{\infty} p^{k} (1-p)^{n-k}$ *x* $k(1 - n)^{n-k}$ *k n* $F(x) = B(x; n, p) = \sum_{n=0}^{\infty} p^{k} (1-p)$ *k* - $=$ $\left(n\right)$ $= B(x; n, p) = \sum_{k=0}^{\infty} {n \choose k} p^{k} (1-p)$ **Binomial Distribution Table**

Table for $n = 5$ and $p = .1$ to .4

J.K. Sahoo

- *a*. $B(8;16,0.40) = 0.8577$
- $= 0.8577 0.7161 = 0.1416$ *b*. $b(8;16,0.40) = B(8;16,0.4) - B(7;16,0.4)$

c.
$$
\sum_{k=6}^{20} b(k;20,0.15) = 1 - B(5;20,0.15) = 1 - 0.9327
$$

$$
= 0.0673
$$

d.
$$
\sum_{k=2}^{4} b(k; 9, 0.30) = B(4; 9, 0.30) - B(1; 9, 0.30)
$$

$$
= 0.9012 - 0.1960 = 0.7052
$$

1/27/2016

Mean, Variance and Moment generating function of Binomial distribution

Mean

$$
\boxed{\mu = n \cdot p}
$$

 $p \rightarrow$ probability of success $n \rightarrow$ number of trials

Variance

Moment generating function

$$
\sigma^2 = n.p.(1-p) \qquad M_X(t) = (q + pe^t)^n.
$$

1/27/2016

J.K.Sahoo

BITS Pilani, K K Birla Goa Campus

n

Proof for Mean

$$
\boxed{\mu = n \cdot p}
$$

 $p \rightarrow$ probability of success $n \rightarrow$ number of trials

$$
\mu = \sum_{x=0}^{n} x \cdot b(x; n, p) = \sum_{x=0}^{n} x \cdot \binom{n}{x} p^{x} (1-p)^{n-x}
$$

$$
= \sum_{x=0}^{n} x \cdot \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}
$$

$$
\mu = np \sum_{x=1}^{n} \frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1} (1-p)^{n-x}
$$

Put
$$
x - l = y
$$
, so $n - x = n - l - y$,

$$
\mu = np \sum_{y=0}^{n-1} \frac{n-1!}{y!(n-1-y)!} p^y (1-p)^{n-1-y}
$$

= $np(p+1-p)^{n-1}$

$$
= np
$$

Proof for Variance:
$$
\sigma^2 = n.p.(1-p)
$$

$$
\mu'_2 = \sum_{x=0}^n x^2 b(x;n,p) = \sum_{x=0}^n x^2 \cdot \binom{n}{x} p^x (1-p)^{n-x}
$$

$$
= \sum_{x=0}^n x^2 \cdot \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}
$$

$$
\mu'_2 = np \sum_{x=1}^n x \cdot \frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1} (1-p)^{n-x}
$$

Put
$$
x - 1 = y
$$
 and $n - 1 = m$

$$
\mu'_2 = np \sum_{y=0}^{m} (y+1) \cdot \frac{m!}{y!(m-y)!} p^y (1-p)^{m-y}
$$

$$
\mu'_{2} = np \sum_{y=0}^{m} y. \frac{m!}{y!(m-y)!} p^{y} (1-p)^{m-y}
$$

+
$$
np \sum_{y=0}^{m} \frac{m!}{y!(m-y)!} p^{y} (1-p)^{m-y}
$$

=
$$
np^{2} m \sum_{y=1}^{m} \frac{(m-1)!}{(y-1)!(m-y)!} p^{y-1} (1-p)^{m-y}
$$

 $+ np$

 $p^{2}(1-p)^{l-2} + np$ $z!(l-z)$ *l np n l z* $z_{(1 - n)}l - z$ $-p)^{t-2} +$ $\overline{}$ $y'_2 = np^2(n-1) \sum$ $=$ — 0 2 $\frac{1}{2} = np^2(n-1) \sum_{n=1}^{\infty} \frac{1}{2(n-1)!} p^2(1-p)$ $!$ ($l - z$)! ! $\mu'_2 = np^2(n-1)$ Put $y - 1 = z$ and $m - 1 = l$ in first summation

$$
= np^2(n-1) + np = n^2p^2 - np^2 + np
$$

$$
\sigma^2 = \mu'_2 - \mu^2 = np(1 - p)
$$

Proof for Moment genrating function

$$
m.g.f = E(e^{tX}) = \sum_{x=0}^{n} e^{tx} {n \choose x} p^x (1-p)^{n-x}
$$
 for $x = 0,1,2, \ldots, n$

$$
=\sum_{x=0}^n \binom{n}{x} \left(pe^t \right)^x q^{n-x}
$$

$$
=\left(q + pe^t \right)^n
$$

m.g.f (continue)

$$
Mean = \frac{dM}{dt}\bigg|_{t=0} = n\big(q + pe^t\big)^{n-1} pe^t\bigg|_{t=0} = n\big(q + p\big)^{n-1} p
$$

= np

Second ordinary/raw moment (moment about origin)

$$
\frac{d^2M}{dt^2}\bigg|_{t=0} = \bigg[n(n-1)p\big(q+pe^t\big)^{n-2}\big(pe^t\big)(e^t) + np\big(q+pe^t\big)^{n-1}\big(e^t\big)\bigg]\bigg|_{t=0}
$$

$$
= n(n-1)p^2 + np
$$

$$
\sigma^2 = \mu'_2 - \mu^2
$$

$$
\sigma^{2} = n(n-1)p^{2} + np - (np)^{2}
$$

= $(np)^{2} - np^{2} + np - (np)^{2}$
= $np(1-p) = npq$

An agricultural cooperative claims that 90% of the watermelons shipped out are ripe and ready to eat. Find the probability that among 18 watermelons shipped out

- (a) All 18 are ripe and ready to eat;
- (b) At least 16 are ripe and ready to eat;
- (c) At most 14 are ripe and ready to eat.

Solution

(b)
$$
P(X \ge 16) = \sum_{k=16}^{18} b(k;18,0.90) = 1 - B(15;18,0.90)
$$

= 1 - 0.2662 = 0.7338

(c) $P(X \le 14) = B(14;18,0.90) = 0.0982$

(a): Given
$$
n = 18
$$
, $p = 0.90$
\n $P(X = 18) = b(18; 18, 0.90) = 1 - B(17; 18, 0.90)$
\n $= 0.1501$

1/27/2016

Suppose that 90% of all copies of a particular textbook fails a certain binding strength test. If 15 copies selected at random,

- (a) find the probability that at most 8 copies pass the test.
- (b) $P(2 < X < 6)$ if X is the no of copies which pass the test.

It is known that balls produced by a certain company will be defective with Probability 0.01 and independently of each other. The company sells the balls in package of 10 and offers a money back guarantee that at most 1 of the 10 balls is defective. What proportion of the packages sold must the company replaced ? Ans: 0.004

It is known that CDs produced by a certain company will be defective with probability 0.01 and independent of each other. The company sells the CDs in a packages of size 10 and offers a money back guarantee that at most one of the 10 CDs in the package will be defective. If some one buy 3 packages, what is the probability that he or she will return exactly one of them ?